
Retrieval-Augmented Generation (RAG) Reference
Architectures
Overview: Retrieval-Augmented Generation (RAG) systems augment large language models (LLMs) with
domain-specific knowledge by first retrieving relevant document segments (“chunks”) and then prompting
an LLM to generate answers grounded in those chunks . This two-phase architecture (indexing vs.
query) enables up-to-date, factual responses while mitigating hallucinations . The figure below
illustrates a typical RAG pipeline: raw enterprise data are ingested and preprocessed (chunked and
embedded), stored in a vector database, and at query time a user’s query is embedded and used to retrieve
top-k chunks. Those chunks are optionally re-ranked and passed, along with the query, to an LLM, which
produces a final grounded answer .

Figure: High-level RAG pipeline architecture (data ingestion, vector indexing, retrieval, and LLM response
generation). Retrieved chunks are used to ground the LLM’s answer, improving factuality .

Chunking Strategies

Effective chunking (breaking documents into indexable segments) is critical. Three common strategies are:
- Fixed-size chunking: Split text into uniform blocks (e.g. every N tokens) . It’s simple and fast to
implement, but may sever semantic boundaries (cutting sentences or paragraphs) and lose context .
Use fixed-size chunks when processing speed is paramount and documents have relatively uniform
structure.
- Semantic (adaptive) chunking: Divide by natural language units (sentences, paragraphs, sections)

. This preserves contextual integrity – each chunk remains a coherent semantic unit – which improves
retrieval relevance . However, it requires linguistic analysis (e.g. NLP tools) and can produce variable
chunk sizes. Semantic chunking is preferred for domains like legal or medical text, where context must not
be arbitrarily cut .
- Hybrid chunking: Combine methods to balance speed and context. For example, use a coarse fixed-size

1 2

2 3

3 4

3 4

5 6

5 6

7

8

8

7 8

Tech Brief:

(c) 2025 Innovista Intelligence | innovista-intelligence.com

Tech Brief: RAG Reference Architectures 1

Inn
ov

ist
a I

nte
llig

en
ce

 - S
am

ple

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://squirro.com/squirro-blog/what-is-retrieval-augmented-generation-rag#:~:text=3,instantaneous%20searching
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/#:~:text=It%20is%20tempting%20to%20assume,Examples%20GitHub%20repo%20for%20developers
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/#:~:text=It%20is%20tempting%20to%20assume,Examples%20GitHub%20repo%20for%20developers
https://squirro.com/squirro-blog/what-is-retrieval-augmented-generation-rag#:~:text=1,back%20to%20the%20source%20documents
https://squirro.com/squirro-blog/what-is-retrieval-augmented-generation-rag#:~:text=1,back%20to%20the%20source%20documents
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://squirro.com/squirro-blog/what-is-retrieval-augmented-generation-rag#:~:text=1,back%20to%20the%20source%20documents
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1.%20Fixed,quick%20data%20traversal%20is%20needed
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,context%20information
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1.%20Fixed,quick%20data%20traversal%20is%20needed
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,context%20information
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,sentences%2C%20paragraphs%2C%20or%20thematic%20breaks
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,a%20chunk%20is%20contextually%20related
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,a%20chunk%20is%20contextually%20related
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,sentences%2C%20paragraphs%2C%20or%20thematic%20breaks
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,a%20chunk%20is%20contextually%20related

pass to create initial chunks, then refine boundaries semantically . One approach is to allow
overlapping chunks (sliding windows) so that no sentence is split; for instance, including the last 50 tokens
of one chunk at the start of the next improves continuity . Hybrid strategies (e.g. fixed initial split
then semantic refinements) can yield both efficient indexing and high retrieval accuracy .

In all cases, the chunk size trades off context versus cost: smaller chunks fit more precisely to queries but
increase the number of items to embed and search . Overlapping or larger chunks preserve
narrative flow but raise computational load . An enterprise RAG should tune chunk size by
measuring retrieval recall and LLM response quality; domain-specific needs (e.g. detailed legal clauses vs.
brief tech specs) will dictate the optimal segmentation.

Re-ranking Methods

Most RAG systems use a two-stage retrieval pipeline: a fast first-stage retriever (bi-encoder or sparse index)
to fetch many candidates, followed by a slower but more accurate second-stage reranker . Key
methods include:

Bi-encoder (dense retriever): A bi-encoder (or dual-encoder) model independently encodes the
query and each document chunk into vectors, then retrieves by nearest-neighbor search (e.g. cosine
similarity) . Bi-encoders (or sparse retrievers like BM25) are very fast at query time, since
chunk embeddings can be precomputed. However, they compress semantics and miss fine-grained
relevance cues (word order, negation) . Bi-encoders excel at high recall – catching many
broadly relevant chunks – but their top results may include noise.

Cross-encoder (neural re-ranker): A cross-encoder (or reranker) takes a query and one document
chunk as joint input to a transformer (e.g. BERT, T5) and outputs a refined relevance score .
Because it can attend to query-document interactions, a cross-encoder usually yields much higher
precision than a bi-encoder . The tradeoff is latency: each reranking scoring is a full model
inference. Thus RAG pipelines typically apply the cross-encoder only to the top-N results from the
first stage (e.g. rerank the top 20–100) . As Pinecone notes, “we retrieve plenty of
documents… then reorder and keep just the most relevant for our LLM” using rerankers .

Ensembles and hybrid retrievers: Enterprises often combine multiple retrievers/rerankers to boost
accuracy. For example, a system might union the results of dense (bi-encoder) and sparse (BM25)
search, then apply a neural re-ranker . Academic work also shows top systems often
ensemble multiple rerankers (e.g. several cross-encoders) to eke out gains . In practice, an
ensemble trade-off is cost versus benefit: single strong rerankers (such as a fine-tuned T5 or Electra
model) often suffice , but advanced applications may layer multiple models for critical precision.
Another middle ground is late-interaction models like ColBERT, which allow some context
interaction without full cross-attention, enabling faster re-ranking at scale.

Taken together, a reference RAG architecture typically looks like: chunk and embed all documents (offline),
then at query time run the query through the embedding model, use vector search (and/or keyword search)
to get an initial set, then apply cross-encoder scoring or other filter to return the final top-k chunks .
This two-stage design maximizes retrieval recall while keeping LLM context manageable.

9 10

11 12

9 10

13 14

15 16

17 4

•

4 18

19 20

•
4 17

19 20

4 21

4

•

22 23

23

23

4 20

(c) 2025 Innovista Intelligence | innovista-intelligence.com

Tech Brief: RAG Reference Architectures 2

Inn
ov

ist
a I

nte
llig

en
ce

 - S
am

ple

https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,optimizing%20both%20speed%20and%20accuracy
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=3,based%20on%20the%20task%20requirements
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=Chunk%20overlap%20allows%20chunks%20to,important%20semantic%20or%20syntactic%20structures
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=chunk%20with%20the%20end%20of,can%20provide%20continuity%20and%20context
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=1,optimizing%20both%20speed%20and%20accuracy
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=3,based%20on%20the%20task%20requirements
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=,phrases%20or%20sentences%20is%20essential
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=In%20RAG%20systems%2C%20the%20choice,architecture%20of%20advanced%20NLP%20solutions
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=memory%20can%20be%20processed%20faster,be%20computationally%20heavier%20to%20process
https://zilliz.com/learn/guide-to-chunking-strategies-for-rag#:~:text=Using%20chunk%20overlap%20can%20significantly,specific%20requirements%20of%20the%20task
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=Re,the%20initial%20retrieval%20step
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=Initial%20retrieval%20often%20relies%20on,This%20refinement%20can%20correct
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=The%20intuition%20behind%20a%20bi,embeddings%20before%20user%20query%20time
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=Think%20of%20the%20process%20as,the%20full%20query%E2%80%93document%20text%20together
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=Re,the%20initial%20retrieval%20step
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=The%20intuition%20behind%20a%20bi,embeddings%20before%20user%20query%20time
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=Think%20of%20the%20process%20as,the%20full%20query%E2%80%93document%20text%20together
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=1,or%20another%20lightweight%20metric
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=retrieval,ranking%2C%20as
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=MS%20MARCO%20leaderboard%20provide%20insight,world
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=MS%20MARCO%20leaderboard%20provide%20insight,world
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=MS%20MARCO%20leaderboard%20provide%20insight,world
https://www.pinecone.io/learn/series/rag/rerankers/#:~:text=Search%20engineers%20have%20used%20rerankers,stage%20model
https://medium.com/@adnanmasood/re-ranking-mechanisms-in-retrieval-augmented-generation-pipelines-an-overview-8e24303ee789#:~:text=Think%20of%20the%20process%20as,the%20full%20query%E2%80%93document%20text%20together

Guardrails and Safety Measures

Enterprise RAG systems must incorporate guardrails to ensure outputs are safe, correct, and policy-
compliant. Key measures include:

Input moderation and sanitization: Before feeding user queries to the LLM or retrieval system,
filter or flag malicious or disallowed content. This can include domain-specific privacy or compliance
checks (e.g. block requests that attempt to retrieve confidential info). Systems may apply pretrained
content-safety models or rule-based filters to each query . For example, NVIDIA’s NeMo
Guardrails provides “content safety check” modules that classify input text against policies (hate
speech, sensitive data, etc.) and block unsafe requests .

Prompt injection defenses: Malicious users may embed commands in their input to hijack the
system (“jailbreak” prompts). Defenses include wrapping the system’s instructions in
cryptographically “salted” tags or unique tokens so that user input cannot override them . AWS
recommends templates where all system instructions are in a single salted section, and the model is
told to ignore any instructions outside it . Another strategy is attack-pattern detection: include
explicit instructions in the prompt telling the LLM to recognize common injection patterns and refuse
them . (For example, the LLM can be instructed to answer “Prompt Attack Detected” if it sees
suspicious embedded commands.) These techniques raise the bar for adversarial input.

Content moderation: Even after generation, the output should be checked for violations (e.g.
privacy leaks, hate speech). Guardrail frameworks like NeMo can route the LLM’s response through
an “output flow” using content-safety models . Alternatively, one can use external APIs (e.g.
OpenAI Moderation) or custom classifiers to scan the answer and block or redact any disallowed
content. This ensures that even if the LLM “hallucinates” unsafe content, it won’t be served to users.

Factuality and hallucination checks: RAG reduces hallucinations by design, but errors can still
occur. A best practice is to verify or filter the LLM’s answer against the provided context. Techniques
include: (a) Self-consistency checks – sample multiple candidate answers from the LLM and check if
they agree. NVIDIA Guardrails’ “self-check hallucination” rail, for instance, compares the chosen
answer to additional generated responses and flags contradictions . (b) LLM-as-a-judge – use
another model or the same model in evaluation mode to verify statements. For example, prompt an
LLM to label each statement in the answer as “supported by the context” or not . (c) Citation
auditing – ensure that every factual claim in the answer can be traced to a retrieved chunk (often
enforced in the prompt with instructions like “only use the provided sources”). Metrics like
groundedness measure the fraction of answer tokens that match the context . If an answer is
flagged as hallucinated or ungrounded, the system can either retry the query or warn the user
(NVIDIA allows both “blocking” and “warning” modes).

Access controls and privacy: On the architectural level, guard against data leakage by isolating
knowledge bases. Employ document-level or chunk-level access controls so that only authorized
users see sensitive info. Enterprise RAG platforms often provide role-based filters during retrieval
and generation. (For instance, Squirro emphasizes “granular access controls” to ensure each user
only retrieves permitted data .)

•

24

24

•

25

26

27

•

24

•

28 29

30

30

31

•

32

(c) 2025 Innovista Intelligence | innovista-intelligence.com

Tech Brief: RAG Reference Architectures 3

Inn
ov

ist
a I

nte
llig

en
ce

 - S
am

ple

https://docs.nvidia.com/nemo/guardrails/latest/user-guides/guardrails-library.html#:~:text=The%20content%20safety%20checks%20in,Guard%203%2C%20Google%E2%80%99s%20ShieldGemma%2C%20etc
https://docs.nvidia.com/nemo/guardrails/latest/user-guides/guardrails-library.html#:~:text=The%20content%20safety%20checks%20in,Guard%203%2C%20Google%E2%80%99s%20ShieldGemma%2C%20etc
https://docs.aws.amazon.com/prescriptive-guidance/latest/llm-prompt-engineering-best-practices/best-practices.html#:~:text=Wrap%20instructions%20in%20a%20single,pair%20of%20salted%20sequence%20tags
https://docs.aws.amazon.com/prescriptive-guidance/latest/llm-prompt-engineering-best-practices/best-practices.html#:~:text=Some%20LLMs%20follow%20a%20template,that%20are%20within%20these%20tags
https://docs.aws.amazon.com/prescriptive-guidance/latest/llm-prompt-engineering-best-practices/best-practices.html#:~:text=Teach%20the%20LLM%20to%20detect,attacks%20by%20providing%20specific%20instructions
https://docs.nvidia.com/nemo/guardrails/latest/user-guides/guardrails-library.html#:~:text=The%20content%20safety%20checks%20in,Guard%203%2C%20Google%E2%80%99s%20ShieldGemma%2C%20etc
https://docs.nvidia.com/nemo/guardrails/latest/user-guides/guardrails-library.html#:~:text=The%20implementation%20for%20the%20self,variation%20of%20the%20SelfCheckGPT%20paper
https://docs.nvidia.com/nemo/guardrails/latest/user-guides/guardrails-library.html#:~:text=responses%29
https://www.ai21.com/knowledge/rag-evaluation/#:~:text=Groundedness
https://www.ai21.com/knowledge/rag-evaluation/#:~:text=Groundedness
https://docs.nvidia.com/nemo/guardrails/latest/user-guides/guardrails-library.html#:~:text=You%20can%20use%20the%20self,hallucination%20detection%20in%20two%20modes
https://squirro.com/squirro-blog/what-is-retrieval-augmented-generation-rag#:~:text=is%20the%20answer,boosting%20their%20contribution%20to%20revenue

