
Retrieval-Augmented Generation (RAG) Reference
Architectures
Overview: Retrieval-Augmented Generation (RAG) systems augment large language models (LLMs) with
domain-specific knowledge by first retrieving relevant document segments (“chunks”) and then prompting
an LLM to generate answers grounded in those chunks . This two-phase architecture (indexing vs.
query)  enables  up-to-date,  factual  responses  while  mitigating  hallucinations .  The  figure  below
illustrates  a  typical  RAG  pipeline:  raw  enterprise  data  are  ingested  and  preprocessed  (chunked  and
embedded), stored in a vector database, and at query time a user’s query is embedded and used to retrieve
top-k chunks. Those chunks are optionally re-ranked and passed, along with the query, to an LLM, which
produces a final grounded answer .

Figure:  High-level  RAG  pipeline  architecture  (data  ingestion,  vector  indexing,  retrieval,  and  LLM  response
generation). Retrieved chunks are used to ground the LLM’s answer, improving factuality .

Chunking Strategies

Effective chunking (breaking documents into indexable segments) is critical. Three common strategies are:
-  Fixed-size chunking: Split text into uniform blocks (e.g. every N tokens) . It’s simple and fast to
implement, but may sever semantic boundaries (cutting sentences or paragraphs) and lose context .
Use  fixed-size  chunks  when  processing  speed  is  paramount  and  documents  have  relatively  uniform
structure.
- Semantic (adaptive) chunking: Divide by natural language units (sentences, paragraphs, sections)

. This preserves contextual integrity – each chunk remains a coherent semantic unit – which improves
retrieval  relevance .  However,  it  requires linguistic  analysis (e.g.  NLP tools)  and can produce variable
chunk sizes. Semantic chunking is preferred for domains like legal or medical text, where context must not
be arbitrarily cut .
- Hybrid chunking: Combine methods to balance speed and context. For example, use a coarse fixed-size
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pass  to  create  initial  chunks,  then  refine  boundaries  semantically .  One  approach  is  to  allow
overlapping chunks (sliding windows) so that no sentence is split; for instance, including the last 50 tokens
of one chunk at the start of the next improves continuity . Hybrid strategies (e.g. fixed initial split
then semantic refinements) can yield both efficient indexing and high retrieval accuracy .

In all cases, the chunk size trades off context versus cost: smaller chunks fit more precisely to queries but
increase  the  number  of  items  to  embed  and  search .  Overlapping  or  larger  chunks  preserve
narrative  flow  but  raise  computational  load .  An  enterprise  RAG  should  tune  chunk  size  by
measuring retrieval recall and LLM response quality; domain-specific needs (e.g. detailed legal clauses vs.
brief tech specs) will dictate the optimal segmentation. 

Re-ranking Methods

Most RAG systems use a two-stage retrieval pipeline: a fast first-stage retriever (bi-encoder or sparse index)
to  fetch  many  candidates,  followed by  a  slower  but  more  accurate  second-stage  reranker .  Key
methods include: 

Bi-encoder (dense retriever): A  bi-encoder  (or  dual-encoder)  model  independently  encodes the
query and each document chunk into vectors, then retrieves by nearest-neighbor search (e.g. cosine
similarity) .  Bi-encoders (or sparse retrievers like BM25) are very fast  at  query time,  since
chunk embeddings can be precomputed. However, they compress semantics and miss fine-grained
relevance  cues  (word  order,  negation) .  Bi-encoders  excel  at  high  recall  –  catching  many
broadly relevant chunks – but their top results may include noise. 

Cross-encoder (neural re-ranker): A cross-encoder (or reranker) takes a query and one document
chunk as joint input to a transformer (e.g. BERT, T5) and outputs a refined relevance score .
Because it can attend to query-document interactions, a cross-encoder usually yields much higher
precision than a bi-encoder . The tradeoff is latency: each reranking scoring is a full model
inference. Thus RAG pipelines typically apply the cross-encoder only to the top-N results from the
first  stage  (e.g.  rerank  the  top  20–100) .  As  Pinecone  notes,  “we  retrieve  plenty  of
documents… then reorder and keep just the most relevant for our LLM” using rerankers . 

Ensembles and hybrid retrievers: Enterprises often combine multiple retrievers/rerankers to boost
accuracy. For example, a system might union the results of dense (bi-encoder) and sparse (BM25)
search,  then  apply  a  neural  re-ranker .  Academic  work  also  shows  top  systems  often
ensemble  multiple  rerankers  (e.g.  several  cross-encoders)  to  eke  out  gains .  In  practice,  an
ensemble trade-off is cost versus benefit: single strong rerankers (such as a fine-tuned T5 or Electra
model) often suffice , but advanced applications may layer multiple models for critical precision.
Another  middle  ground  is  late-interaction  models like  ColBERT,  which  allow  some  context
interaction without full cross-attention, enabling faster re-ranking at scale. 

Taken together, a reference RAG architecture typically looks like: chunk and embed all documents (offline),
then at query time run the query through the embedding model, use vector search (and/or keyword search)
to get an initial set, then apply cross-encoder scoring or other filter to return the final top-k chunks .
This two-stage design maximizes retrieval recall while keeping LLM context manageable. 
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Guardrails and Safety Measures

Enterprise  RAG  systems  must  incorporate  guardrails to  ensure  outputs  are  safe,  correct,  and  policy-
compliant. Key measures include: 

Input moderation and sanitization: Before feeding user queries to the LLM or retrieval system,
filter or flag malicious or disallowed content. This can include domain-specific privacy or compliance
checks (e.g. block requests that attempt to retrieve confidential info). Systems may apply pretrained
content-safety  models  or  rule-based  filters  to  each  query .  For  example,  NVIDIA’s  NeMo
Guardrails  provides “content  safety  check”  modules that  classify  input  text  against  policies  (hate
speech, sensitive data, etc.) and block unsafe requests . 

Prompt injection defenses: Malicious users  may embed commands in  their  input  to hijack the
system  (“jailbreak”  prompts).  Defenses  include  wrapping  the  system’s  instructions  in
cryptographically “salted” tags or unique tokens so that user input cannot override them . AWS
recommends templates where all system instructions are in a single salted section, and the model is
told to ignore any instructions outside it . Another strategy is attack-pattern detection: include
explicit instructions in the prompt telling the LLM to recognize common injection patterns and refuse
them . (For example, the LLM can be instructed to answer “Prompt Attack Detected” if it sees
suspicious embedded commands.) These techniques raise the bar for adversarial input. 

Content  moderation: Even  after  generation,  the  output  should  be  checked  for  violations  (e.g.
privacy leaks, hate speech). Guardrail frameworks like NeMo can route the LLM’s response through
an  “output  flow”  using  content-safety  models .  Alternatively,  one  can  use  external  APIs  (e.g.
OpenAI Moderation) or custom classifiers to scan the answer and block or redact any disallowed
content. This ensures that even if the LLM “hallucinates” unsafe content, it won’t be served to users. 

Factuality and hallucination checks: RAG reduces hallucinations by design,  but  errors can still
occur. A best practice is to verify or filter the LLM’s answer against the provided context. Techniques
include: (a) Self-consistency checks – sample multiple candidate answers from the LLM and check if
they  agree.  NVIDIA  Guardrails’  “self-check  hallucination”  rail,  for  instance,  compares  the  chosen
answer to additional generated responses and flags contradictions . (b) LLM-as-a-judge – use
another model or the same model in evaluation mode to verify statements. For example, prompt an
LLM to label each statement in the answer as “supported by the context” or not . (c)  Citation
auditing – ensure that every factual claim in the answer can be traced to a retrieved chunk (often
enforced  in  the  prompt  with  instructions  like  “only  use  the  provided  sources”).  Metrics  like
groundedness measure the fraction of answer tokens that match the context .  If  an answer is
flagged as hallucinated or ungrounded,  the system can either retry the query or warn the user
(NVIDIA allows both “blocking” and “warning” modes ). 

Access controls and privacy: On the architectural level,  guard against data leakage by isolating
knowledge bases.  Employ document-level  or  chunk-level  access  controls  so that  only  authorized
users see sensitive info. Enterprise RAG platforms often provide role-based filters during retrieval
and generation. (For instance, Squirro emphasizes “granular access controls” to ensure each user
only retrieves permitted data .) 
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